Exercise 7.2.13

Radioactive nuclei decay according to the law

$$
\frac{d N}{d t}=-\lambda N
$$

N being the concentration of a given nuclide and λ, the particular decay constant. In a radioactive series of two different nuclides, with concentrations $N_{1}(t)$ and $N_{2}(t)$, we have

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =-\lambda_{1} N_{1} \\
\frac{d N_{2}}{d t} & =\lambda_{1} N_{1}-\lambda_{2} N_{2}
\end{aligned}
$$

Find $N_{2}(t)$ for the conditions $N_{1}(0)=N_{0}$ and $N_{2}(0)=0$.

Solution

Begin by solving the ODE for $N_{1}(t)$. Divide both sides by N_{1}.

$$
\frac{\frac{d N_{1}}{d t}}{N_{1}}=-\lambda_{1}
$$

The left side can be written as the derivative of a logarithm by the chain rule.

$$
\frac{d}{d t}\left(\ln N_{1}\right)=-\lambda_{1}
$$

Integrate both sides with respect to t.

$$
\ln N_{1}=-\lambda_{1} t+C_{1}
$$

Exponentiate both sides.

$$
\begin{aligned}
N_{1}(t) & =e^{-\lambda_{1} t+C_{1}} \\
& =e^{-\lambda_{1} t} e^{C_{1}}
\end{aligned}
$$

Apply the initial condition $N_{1}(0)=N_{0}$ to determine $e^{C_{1}}$.

$$
N(0)=e^{-\lambda_{1}(0)} e^{C_{1}} \quad \rightarrow \quad N_{0}=e^{C_{1}}
$$

So then

$$
N_{1}(t)=N_{0} e^{-\lambda_{1} t}
$$

Substitute this formula for N_{1} into the second ODE involving N_{2}.

$$
\begin{gathered}
\frac{d N_{2}}{d t}=\lambda_{1} N_{1}-\lambda_{2} N_{2} \\
\frac{d N_{2}}{d t}=\lambda_{1} N_{0} e^{-\lambda_{1} t}-\lambda_{2} N_{2}
\end{gathered}
$$

Bring $\lambda_{2} N_{2}$ to the left side.

$$
\frac{d N_{2}}{d t}+\lambda_{2} N_{2}=\lambda_{1} N_{0} e^{-\lambda_{1} t}
$$

This is a first-order linear ODE, so it can be solved by multiplying both sides by an integrating factor I.

$$
I=\exp \left(\int^{t} \lambda_{2} d s\right)=e^{\lambda_{2} t}
$$

Proceed with the multiplication.

$$
e^{\lambda_{2} t} \frac{d N_{2}}{d t}+\lambda_{2} e^{\lambda_{2} t} N_{2}=\lambda_{1} e^{\lambda_{2} t} N_{0} e^{-\lambda_{1} t}
$$

The left side can now be written as a derivative by the product rule. Combine the exponential functions on the right side.

$$
\begin{equation*}
\frac{d}{d t}\left(e^{\lambda_{2} t} N_{2}\right)=N_{0} \lambda_{1} e^{\left(\lambda_{2}-\lambda_{1}\right) t} \tag{1}
\end{equation*}
$$

Suppose first that $\lambda_{1} \neq \lambda_{2}$. Integrate both sides with respect to t.

$$
e^{\lambda_{2} t} N_{2}=N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{\left(\lambda_{2}-\lambda_{1}\right) t}+C_{2}
$$

Divide both sides by $e^{\lambda_{2} t}$.

$$
\begin{aligned}
N_{2}(t) & =N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{\left(\lambda_{2}-\lambda_{1}\right) t} e^{-\lambda_{2} t}+C_{2} e^{-\lambda_{2} t} \\
& =N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{1} t}+C_{2} e^{-\lambda_{2} t}
\end{aligned}
$$

Apply the initial condition $N_{2}(0)=0$ now to determine C_{2}.

$$
\begin{gathered}
N_{2}(0)=N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{1}(0)}+C_{2} e^{-\lambda_{2}(0)} \\
0=N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}+C_{2} \\
C_{2}=-N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}
\end{gathered}
$$

Plug this back into the general solution for $N_{2}(t)$.

$$
\begin{aligned}
N_{2}(t) & =N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{1} t}-N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{2} t} \\
& =N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}\left(e^{-\lambda_{1} t}-e^{-\lambda_{2} t}\right), \quad \lambda_{1} \neq \lambda_{2}
\end{aligned}
$$

Suppose secondly that $\lambda_{1}=\lambda_{2}$. Then equation (1) becomes

$$
\frac{d}{d t}\left(e^{\lambda_{2} t} N_{2}\right)=N_{0} \lambda_{2}
$$

Integrate both sides with respect to t.

$$
e^{\lambda_{2} t} N_{2}=N_{0} \lambda_{2} t+C_{3}
$$

Divide both sides by $e^{\lambda_{2} t}$.

$$
N_{2}(t)=e^{-\lambda_{2} t}\left(N_{0} \lambda_{2} t+C_{3}\right)
$$

Apply the initial condition $N_{2}(0)=0$ to determine C_{3}.

$$
N_{2}(0)=C_{3}=0
$$

So then

$$
N_{2}(t)=N_{0} \lambda_{2} t e^{-\lambda_{2} t}, \quad \lambda_{1}=\lambda_{2} .
$$

Therefore,

$$
\begin{aligned}
& N_{1}(t)=N_{0} e^{-\lambda_{1} t} \\
& N_{2}(t)=\left\{\begin{array}{ll}
N_{0} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}\left(e^{-\lambda_{1} t}-e^{-\lambda_{2} t}\right) & \text { if } \lambda_{1} \neq \lambda_{2} \\
N_{0} \lambda_{2} t e^{-\lambda_{2} t} & \text { if } \lambda_{1}=\lambda_{2}
\end{array} .\right.
\end{aligned}
$$

